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ABSTRACT: This article concerns the injection manufac-
turing process of molded foam sheets and their intrinsic
shock and noise performances. The main goal is to opti-
mize the physical performances of molded plastic foams at
an early stage in their design and manufacturing. The
effects of injection process parameters on the properties of
molded LDPE foams are investigated. The input optimiza-
tion parameters considered are as follows: injection tem-
perature, mold temperature, injection speed, plasticization
back pressure, and screw rotation speed during the plasti-
cization phase. The output optimization parameters con-
sidered are as follows: density, shock absorption, and
acoustic absorption. The experimental design method
made use of the central composition design. This allows
us to identify simplified mathematical models for input/
output and to detect the most influential input in the injec-

tion process. Ultimately, models are used to carry out mul-
tiobjective optimization of injected foams characteristics in
the presence of a few constraints on decision variables.
This optimization is done using a very robust technique,
NSGA-II. Several two-objective functions involving some-
times the maximization and other times minimization of
foam characteristics have been studied to illustrate the
procedures and explain and interpret the results obtained.
One needs to solve several simpler optimization problems
with just one or two decision variables (smaller amount of
freedom), to gain insight and to provide help in formulat-
ing the more general multiobjective optimization problem.
VVC 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114: 358–368, 2009
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INTRODUCTION

Plastic foams are made up of scattered cavities.
These cavities enhance lightness and softness, while
adding to the soundproofing and heatproofing qual-
ities. Polymer foams are increasingly used in indus-
trial applications. Made up of a structure of more or
less regular open or closed cells, they are expected
to have a high energy absorption capacity (particu-
larly useful for shock applications), efficient acoustic
and thermal insulating properties, and in some cases
interesting filtering properties. For these reasons,
they are widely used in the aircraft industry, auto-
mobiles, buildings, packaging, etc. Combining good
mechanical properties with low density, rigid poly-
mer foams can also be used as structural materials.
Whatever their use, optimization requires an under-
standing of the relationship between their processing
and mechanical properties. This will be the focus of
this article.

There are numerous techniques for plastic foam
processing and they vary according to the final

product application. Among the most common
industrial processing techniques are extrusion and
injection. Extrusion is very often used and is easier
to perform than injection. This is mainly due to the
fact that there are fewer process parameters to con-
sider for manufacturing optimization purposes. In
contrast, the injection process implies a greater num-
ber of parameters having a direct impact on the final
product aspect and properties. Injection molding
machines commonly consist of three parts. The plas-
ticization unit is used to melt the blend and inject it
through the nozzle into the mold cavity. The second
part is the mold and its cavity. And finally, the clos-
ing unit is the part which clamps the mold. To
obtain a good foam plastic piece, certain injection
conditions have to be applied. First, the plasticizing
cylinder must remain permanently attached to the
fixed part of mold so that the injection barrel nozzle
never leaves the mold nozzle during the injection
cycle. On the other hand, it is not recommended to
maintain pressure so as to obtain a natural expan-
sion of the material. The solidification running time
must be large and necessary to rigidify the walls of
the foam cavities and completely squeeze the gas.
The next condition, in the plasticizing stage, consists
of preparing the exact volume to fill up the mold
cavity. This stage begins just after the injection phase
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(amount of materiel injected was determined by se-
quential injection to obtain a complete piece, this is
for every design of experiment configuration). As for
the direct feed nozzle, i.e., without injection thresh-
old nor feeding canals, the injection point is directed
at the center of the part. The ejection of the specimen
is done manually to minimize the specimen defor-
mation that would occur if ejector pins pushed the
specimen out of the cavity. To ensure a rigorous
study, the first 10 molded parts were eliminated and
the effects of changed parameters were observed af-
ter every five molded pieces.

Many studies of the relationship between the plas-
tic foam extrusion process and the resulting mechan-
ical properties of the foam can be found in the
available literature.1–4 The injection process of com-
pact plastic materials is studied in references.5,6 But
very few articles consider the foam injection pro-
cess.7 This article aims to give insight into the injec-
tion processing-mechanical properties of LDPE
foams.

The effect of extrusion conditions on the physico-
chemical and mechanical properties of plastic foams
has been covered in many articles. Working with
expanded rice snacks, Ding et al.1 for instance,
investigated the effect of extrusion conditions
including: feed rate, feed moisture content, screw
speed, and barrel temperature on the physicochemi-
cal properties (density, expansion, water absorption
index), on the water solubility index (WSI), and on
sensory characteristics (hardness and crispness) of
the expanded rice snack. The authors indicated that
a higher barrel temperature increased the extrudate
expansion but reduced density, while increasing the
WSI and crispness of the extrudate. Screw speed
had no significant effect on the physicochemical
properties and sensory characteristics of the extru-
date. Jeong and Toledo2 studied the effects of CO2

injection pressure on the expansion ratio, bulk den-
sity, porosity, water absorption index, WSI, specific
mechanical energy, average cell size, cell area ratio,
and cell density. An experimental investigation was
carried out to study the rheological behavior of eth-
ylene propylene diene rubber compounds in extru-
sion containing a blowing agent.3 The cell
morphology development and rheological properties
were studied for gum and carbon black-filled sys-
tems with variation of the blowing agent, extrusion
temperature, and shear rate. An analysis of cell mor-
phology of high-density polymer foams was studied
by Grosselin and Rodrigue.4 This study proposes
methods to calculate the surface cell count as well as
approaches for converting surface cell in volume
cell.

Taking advantage of the experimental design
method, Postawa and Koszkul5 studied the influence
of processing conditions (mold temperature, injec-

tion temperature, cooling time, hold pressure, and
injection speed) for selected properties that charac-
terize the injection molded piece, such as mass, lon-
gitudinal shrinkage, transverse shrinkage, and
diversity of the processing shrinkage within the con-
fines of one molded piece. The authors used central
composition design to describe the investigated
properties of the molded pieces as a function of the
most significant input parameters. Nagaoka et al.6

studied dependencies between characteristics of the
core layer resin, and the skin/core ratio in particular
with the injection molding conditions. In their arti-
cle, they consider the influences that the molding
conditions such as injection speed, cylinder tempera-
ture, and mold temperature confer on the mechani-
cal properties of sandwich moldings. It was
demonstrated that the core cylinder temperature and
mold temperature could be used to adjust the me-
chanical properties of sandwich injection moldings.
In the case of single material sandwich moldings,
the injection speed seemed to play no significant
role, even though it was clearly demonstrated that
the core volume increases with injection speed.
Concerning foam injection studies, an article writ-

ten by Lee and Cha7 should be mentioned. The
thickness of the skin layer on parts made with a
microcellular injection molding process may influ-
ence its properties, including impact and tensile
strength, density, and sound transmission. Lee and
Cha studied the variations in skin layer thickness
with processing parameters, particularly the mold
temperature. Yuan and Turng8 studied microstruc-
tures and mechanical properties of microcellular
injection-molded polyamide-6 nanocomposites. Cell
wall structure and smoothness were determined by
the size of the crystalline structure, which, in turn,
were based on the material system and molding con-
ditions. Yuan and Turng studied exponential corre-
lation between cell density and cell size of the
materials studied. On the other hand, Chedly et al.9

selected injection process parameters that may influ-
ence on foams characteristics. Authors selected five
parameters among 11: injection temperature, mold
injection, back pressure, injection speed, and plasti-
cizing speed. Density distribution over injected
plates and bulk material quantity (that filled cavity
on injection machine) were studied by authors,10

and it concluded that distribution is parabolic where
the top is the injection point. Polynomials models of
density distribution, according to process parame-
ters, were established, and Chedly et al.11 studied
robustness of these models. Recently, a new article
studied process parameters impact on shock and
acoustic absorption. Chedly et al. took into account
foams injection process. Studied parameters are as
follows: injection temperature, mold temperature,
injection speed, plasticization back pressure, and
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screw rotation speed during the plasticization phase.
Experiments were done on foams to evaluate the
shock and acoustic absorption characteristics. Shock
and acoustic models were built using design of
experiments. And for validation, tests were done on
specimens manufactured with central values of pro-
cess parameters. Finally, models robustness was ana-
lyzed using Taguchi principle.

In this article, the relationship between the plastic
foam injection process and the resulting mechanical
properties of the foam are considered. The input
optimization parameters considered are as follows:
injection temperature, mold temperature, injection
speed, plasticization back pressure, and screw rota-
tion speed during the plasticization phase. The main
outputs considered for the optimization are as fol-
lows: density, shock absorption, and acoustic
absorption. The experimental design method was
implemented using the central composition design.
This allows us to identify simplified mathematical
models for input/output and to detect the most in-
fluential input in the injection process. Ultimately,
models are used to carry out multiobjective optimi-
zation of injected foams characteristics in the pres-
ence of a few constraints on decision variables. This
optimization is done using a very robust technique,
NSGA.

MATERIALS AND PROCEDURES

In this section, the materials, equipment, and proce-
dures employed are briefly described. First, the
materials used for foam manufacturing are pre-
sented as well as their characteristics. Then, the
equipment and injection conditions concerning plas-
tic foam production are described. Experiment
design theories are the object of the third part of this
section, where a brief review of the central composi-
tion design is presented. Finally, input/output fac-
tors used in the experimental design method are
defined including testing principles and the optimi-
zation strategy.

Materials

Plastic foams are used when a proportion of cavities
filled by gas are required in the structure of a poly-
mer matrix. The matrix is a low-density polyethyl-
ene Lupolen 2420 H, purchased from Basell
Company. The blowing agent master batch is Pal-
marole BA F4 E, purchased from Adeka Palmarole.
This master batch contains � 40% of a chemical
endothermic blowing agent (sodium hydrogen car-
bonate) dispersed in the LDPE matrix. A master
batch blend of LDPE and blowing agent was
employed. These blends contain 6% Palmarole BA
F4 E master batch (mechanical pellet blends, pre-

pared in a turbomixer with rotational speed blades
at 350 rpm, for 15 min).

Equipment

Injection molding machines commonly consist of
three parts. The plasticization unit is used to melt
the blend and inject it through the nozzle into the
mold cavity. The second part is the mold and its
cavity. And finally, the closing unit is the part which
clamps the mold. Samples of investigations have
been made using injection method by means of Bil-
lion H260/470. It is not recommended to maintain
pressure so as to obtain a natural expansion of the
material. The solidification running time was defined
during tests and set to 200 s. Specimens manufac-
tured were 150 � 150 mm2 forms, 16-mm thick, and
the injection point was in the center of the part.

Brief review of the experimental design method

During the injection process of compact plastic mate-
rial pieces, many parameters can affect the overall
product quality. In our case, a polymer matrix blend
with a blowing agent was used and under the effect
of heat, a chemical transformation occurred, releas-
ing gas. And so, a first hypothesis can be given:
some process parameters may have an effect on
foam characteristics. To clarify this point, experiment
design theories were used as the quantification and
qualification technique for understanding the effects
of injection process parameters on plastic foam prod-
uct characteristics. The problem may be assimilated
to the black box, which presents an input/output
system. Inputs (X1, X2,. . ., Xn) are the process factors
(design parameters, controlled variables) and out-
puts (Y1, Y2,. . ., Ym) are the measurable responses
(product characteristics). This system can be dis-
turbed by noise factors (ambient temperature, pro-
cess sensitivity. . .). The main objective is to find a
relationship between influential inputs and the out-
puts with a prediction error, e, minimizing noise
factors:

Yi ¼ FðX1;X2;:::;XnÞ þ e 1 � i � m (1)

Central composition design is a technique based
on statistics in which a complete factorial design on
two levels is supplemented by a central point and
two additional points for each factor (called the ‘‘star
points’’). Thus, five levels are defined for each factor.
The central point and star points are added to obtain
information on the design space within and beyond
the two levels of complete factorial design, which
makes it possible to estimate factor effects at higher
orders. In short, complementary tests are repre-
sented on each factor axis by points located at a
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distance a of the field center. The entire set of tests
includes: NF factorial design tests 2k, N0 central tests,
and NA star tests. Central composition designs are
not orthogonal, so one can seek a quasi-orthogonal-
ity by increasing the number of tests in the center.
The value of a depends on a criterion of optimality:
the criterion characterizing central composition
design.

a ¼ NFð Þ1=4 (2)

This table makes it possible to express experimen-
tal data in sophisticated models: linear model with
interactions or a polynomial model with or without
interactions. Model general form has the following
expression:

Y ¼ a0 þ
X

i

aiXiþ
X

i;j

bijXiXj þ
X

j

cjX
2
j (3)

Where, Y is the studied output, Xi the input value,
ai, bij, and cj the model coefficients, and a0 is the
model constant.

Input/output factors in the experimental
design method

The injection molding process requires the adjust-
ment of several parameters. For this study, five fac-
tors were considered and are referred to as ‘‘inputs’’
in this article (with respect to the purpose of optimi-
zation): A, defines the injection temperature; B, the
mold temperature; C, the hydraulic back pressure
(defined as the pressure applied during the screw
rotation stage, it improves dissolving of the blowing
agent in LDPE matrix); D, the injection speed; and
E, the screw rotation speed during the plasticizing
stage. By modifying one or more of these process
parameters, the molten material state changes and
thus results in a different microstructure and differ-
ent properties of the injected foam. The output pa-
rameters considered concern some of the foam
mechanical properties. The average mass density of
the specimen was considered and was calculated
from 15 samples of the same batch. The shock
absorption coefficient was the second output consid-
ered and established using shock tests. The final
physical parameter considered is the acoustic
absorption coefficient.

Shock tests11 were conducted with a machine,
which comprises an impact system (with a force and
a displacement device), and a data acquisition and
processing system. Instrumentation in force, P, and
in displacement, l, of the test gives directly shows
the evolution of P according to l. By integration this
curve, we find the evolution of energy, E, through-
out the test. Typical curves E(l) are presented later
(Fig. 1). These variations allow to determine two

characteristic values of the test: the energy absorbed
by the material, Eabs, it is presented on the curve E(l)
by the final value of the relief zone; and the real
impact energy delivered to the material, Eimp. Tested
specimens were 100 � 100 mm2, 8-mm thick. They
were cut from injected specimens. These samples are
skinless (a 4-mm layer was removed on each side
with a micromilling machine). For each specimen, a
shock test was carried out with a constant altitude
(H ¼ 142 mm) and a constant mass (m ¼ 2300 g).
From curve E(l), the absorbed energy value, which
appear as important to characterize injected foams,
was defined to compute output shock coefficient
ashock:

ashock ¼ Eabs

Eimp
; 0 � ashock � 1 (4)

The acoustic absorption coefficient defines the
third output parameter, and the stationary wave
tube11 is the main tool used to determine material
acoustic absorption characteristics. The specimen
was attached at one end of the tube, and a loud-
speaker at the other extremity. In the center of this
last, there is a hole through which a microphone
support can be inserted. The exact position of the
microphone is located with a graduated ruler. Exci-
tation and measure strings include essentially the ac-
quisition, treatment, and synthesis digital units
(Siglab) connected to computer. Tested specimens
were disc-shaped 100 mm in diameter and 8-mm
thick. They were manufactured from injected foam
samples using a micromilling machine. These speci-
mens were foam, skinless discs. The acoustic absorp-
tion coefficient curve (Fig. 2) cannot be fitted by a
mathematical equation, hence, the choice of 30 val-
ues corresponding to 30 definite frequencies. These
values were defined as output parameters. Speci-
mens used in acoustic absorption tests were taken to

Figure 1 Impact energy against displacement (LDPE, e ¼
8 mm, H ¼ 292 mm, and m ¼ 2300 g).
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measure foam densities; the latter is defined as the
last mechanical property, i.e., the output parameter.

SHOCK AND ACOUSTIC MODELS

Searching appropriate models representing correctly
outputs according to factors in the design space is
the aim of this part. The central composition table
was used to find models, which would fit with ex-
perimental data. The aptitude of models to predict
outputs according to given factors was verified by
carrying out experimental tests, setting the input fac-
tors at centered values.

In this study case, the number of design factors
n ¼ 5. Therefore, the number of factorial design tests
NF ¼ 32 tests are normally required. However, using
fractional design, only NF ¼ 16 tests are needed and
the new factor level a ¼ 2. The number of star point
tests NA ¼ 10 and of centered point tests N0 ¼ 10
(orthogonal hypothesis of the central composition
design).The total number of tests to be performed is
thus 36 tests.11

A, B, C, D, and E are the factors used in the inves-
tigation. The lower and upper limits for each factor
are �2 and þ2, respectively. These limits take into
account the injection machine performance limit and
the achievement of a good sample. Level values �1,
0, and þ1 were obtained by linear extrapolation
allowed. In the table later (Table I), those different
values for each factor are presented:

On the basis of the gathered investigation results,
statistical analyses have been performed using Lu-
miere softwareV

R

, which allows the model coefficients
for each investigated output to be extracted, with
95% confidence.

The polynomial model without interactions
ðY ¼ a0þ

P
i aiXi þ

P
j cjX

2
j Þ appears as the better fit-

ting experimental data. To verify the aptitude of the
model to predict outputs according to given factors,

experimental tests were performed, setting the input
factors at the centered values (Tinj ¼ Tm ¼ CP ¼ Vinj

¼ Vdos ¼ 0). Then, a comparison was made of exper-
imental results Yexp and theoretical results Ytheo,
which were obtained from model equation set on
the centered values, to check if Ytheo is a number in
the interval Yexp � 2r;Yexpþ2r

� �
, where r is the ex-

perimental standard deviation. When the latter con-
dition is verified, the theoretical model is considered
to fit with experimental data. If not, the theoretical
model is considered not to fit and then a more so-
phisticated model should be investigated.
For example, the appropriate model considered to

fit experimental data for the case of foam density is
polynomial without interactions. This output
depends on injection temperature, back pressure,
injection speed, and screw rotation speed. The
model has the following format:

dm ¼ 0:1587þ 0:001� Tinj � 0:0059� CPþ 0:0012

� Vinj þ 0:0075� CP2 þ 0:0127� V2
dos ð5Þ

The ai and cc coefficient values obtained enable us
to determine the investigated output value at any
point of the design space limited by the input pa-
rameters. High values of the received adjustment
coefficients (greater than 0.9) prove that the model
equations properly describe (with a small deviation)
the dependence between the investigated output val-
ues and the input processing parameters.
dm increases with Vinj, indeed a rapid filling of the

mold allows rapid cooling and thus gives a higher
value to dm. On the other hand, increasing Tinj

causes an increase in foam density. Increasing the
dosing speed and back pressure causes, at first,
when �2 � CP,Vdos � 0, the decrease of dm and,
when 0 � CP,Vdos � þ 2, it causes dm to increase.
Indeed, when the back pressure increases, gas dis-
solved better in the mattress, so it expands in the
mold and foam density decreases. According to this
model, dosing speed and then back pressure have
the most effects on foam density because of higher
values of theirs coefficients. Therefore, expansion
phenomenon is happen in majority during dosing
step. It seems that, on the other hand, these two pro-
cess parameters favor crash and acoustic absorption
coefficients. And so, increasing foam density induces

TABLE I
Factors Values at Different Levels

�2 �1 0 þ1 þ2

A Tinj 200 212.5 225 237.5 250
B Tm 20 27.5 35 42.5 50
C CP 10 15 20 25 30
D Vinj 90 117.5 145 172.5 200
E Vdos 90 115 140 165 190

Figure 2 Acoustic absorption coefficient according to
frequency.
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amelioration of foams shock and acoustic character-
istics:

aShock ¼ 0:5658� 0:0126� Tm þ 0:0141� CP2

þ 0:0171� Vdos þ 0:5234ð Þ2 ð6Þ

aacous f ¼ 954Hzð Þ ¼ 0:1047þ 0:0161� Tm þ 0:0203

� V2
dos þ 0:0035� Tinj ¼ 3:2428

� �2

þ 0:0203� Vinj þ 0:3645
� �2 ð7Þ

Increasing injection speed induces crushing cells
on mold wall and so the increase of void on the
mold, increasing material quantity injected and ulti-
mately foam density. The same phenomenon is
observed in mass density model:

d ¼ 0:3491� 0:0101� Tinj � 0:0048� Tm � 0:013

� CP2 � 0:0132� Vinj � 0:231
� �2 ð8Þ

With regards to data in Table II, the polynomial
model does correctly represent outputs according to
factors in the design space. In the case of inputs cen-
tral values, theoretical crash absorption was 0.5705.
This value is a number of the interval [0.569–0.572];
interval defines experimental values of shock
absorption performed with inputs centered values.
Ultimately, the polynomial model is considered as
fitting with experimental data for the case of ashock.

On the other hand, acoustic absorption coefficients
models have same form and same influents factors
as seen in eqs. (7) and (9).

aacous f ¼ 1330Hzð Þ ¼ 0:1931þ 0:0299� Tinj þ 0:0388

� Tm þ 0:0192� Vinj þ 0:0284� T2
inj þ 0:0277

� V2
inj þ 0:0227� V2

dos ð9Þ

MULTIOBJECTIVE OPTIMIZATION

In this work, mathematical models are first devel-
oped for injected foams mechanical characteristics
(global density, foam density, shock, and acoustic
absorption coefficients). The experimental results
from experiment design are used to provide
estimates of variables and parameters required in

models. Thereafter, multiobjective Pareto-optimal
solutions are generated for use in the manufacturing
and characterization of injected foams using genetic
algorithm (GA).
GA is a nontraditional search and optimization

method,12–14 which has become quite popular in en-
gineering optimization. It mimics the principles of
genetics and the Darwinian principle of natural
selection (i.e., survival of the fittest). Simple genetic
algorithm (SGA) is suitable for optimizing problems
with a single objective function. In single objective
function optimization, one attempts to find the best
design, which is usually the global minimum (or
maximum). Most real world problems involve the si-
multaneous optimization of multiple objective func-
tions (a vector). Such problems are conceptually
different from single objective function problems. In
multiple objective function optimization, there may
not exist a solution that is the best (global optimum)
with respect to all objectives. Instead, there could
exist an entire set of optimal solutions that are
equally good. These solutions are known as Pareto-
optimal (or nondominated) solutions. A Pareto set,
for example, for a two-objective function problem is
described by a set of points such that when one
moves from one point to any other, one objective
function improves, whereas the other worsens. Thus,
one cannot say that any one of these points is supe-
rior (or dominant) to any other. Because none of the
nondominated solutions in the Pareto set is superior
to any other, any one of them is an acceptable solu-
tion. The choice of one solution over the other
requires additional knowledge of the problem, and
often, this knowledge is intuitive and nonquantifi-
able. The Pareto set, however, is extremely useful
because it narrows down the choices and helps to
guide a decision maker in selecting a desired operat-
ing point (called the preferred solution) from among
the (restricted) set of Pareto-optimal points, rather
than from a much larger number of possibilities.
Several methods are available to solve multiobjec-

tive optimization problems, e.g., the constraint
method,15–17 goal attainment method,18–20 and the
nondominated sorting genetic algorithm (NSGA).13,21,22

The algorithm devised in this study is based on
the concept of nondominated sorting originally con-
ceptualized by Goldberg13 and developed by Srini-
vas and Deb21 as the NSGA. The NSGA is not an
entirely new optimization algorithm, but rather a
modification to the fitness evaluation procedures
that exist in standard GAs. It is in some sense a sup-
plement to a GA that allows for a more effective
means of multiobjective optimization. This technique
(NSGA) offers several advantages.14 For instance, its
efficiency is relatively insensitive to the shape of the
Pareto-optimal front, problems with uncertainties,
stochasticities, and with discrete search spaces can

TABLE II
Model Correspondence for Central Values

Theoretical value Experimental value

d 0.3484 [0.3403–0.351]
dm 0.1587 [0.148–0.169]
aShock 0.5705 [0.569–0.572]
aacous (954 Hz) 0.1442 [0.138–0.159]
aacous (1330 Hz) 0.1931 [0.185–0.202]
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be handled efficiently. On the other hand, the
‘‘spread’’ of the Pareto set obtained is excellent (in
contrast, the efficiency of other optimization meth-
ods decides the spread of the solutions obtained),
and finally, it involves a single application to obtain
the entire Pareto set (in contrast to other methods,
e.g., the constraint method, which needs to be
applied several times over). Indeed, NSGA has been
applied recently to optimize several processes of
industrial importance in chemical engineering,
including an industrial Nylon-6 semibatch reac-
tor,22,23 a wiped-film polyester reactor,24 a steam re-
former,25 and cyclone separators.26

Multiobjective optimization of injected LDPE
foam characteristics

NSGA was used with the tuned model described
earlier to optimize the mechanical characteristics of
injected LDPE foams. Multiobjective Pareto-optimal
solutions are generated here for use in both the
operating phases and characteristics of plastic foams.
To ensure that physically meaningful results are
obtained, constraints on process parameters (as injec-
tion temperature, mold temperature, back pressure,
injection speed, and dosing speed) were added to
our model. These constraints are necessary to ensure
that process parameters stay within reasonable limits
assumed by injection equipments.

Therefore, problem, that is multiobjective optimi-
zation one with constraints on parameters, may be
formulated as:

Minimize FðxÞ ¼ f1 xð Þ; f2 xð Þf g (10)

Such as xmin
r � xr � xmax

r , 1 � r � n.
In this study, objective functions may be as fol-

lows: mass density, foam density, shock absorption
coefficient, and acoustic absorption coefficients at
954 and 1330 Hz. Multiobjective optimization
depends of characteristics target: maximization or
minimization of the two functions or minimize one
and maximize the other. In the table later (Table III),
the choice of objective functions is presented. To
reduce material cost, it is legitimate to minimize
mass and foam densities. To ameliorate vibroacous-

tic performances, maximize shock and acoustic
absorption coefficients are the ideal choice.
As the computer code available with us for NSGA

minimizes the objective functions, we need to trans-
form the objective function to maximize into one
involving minimization. Several candidates are avail-
able for this, but probably the simplest and the most
popular form (which also does not change the loca-
tion of the solutions) is to minimize (�f2), rather
than maximize f2. Thus, an example of the optimiza-
tion problem studied (minimize dm and maximize
aacous (954 Hz)) is represented mathematically by:

Min dm �Max aacousð954HzÞ ¼ Minf�aacousð954HzÞg
� Such that� 2 � A;B;C;D;E � þ2 ð11Þ

The decision variables for this problem are taken
as (i) injection temperature, A; (ii) mold temperature,
B; (iii) back pressure, C; (iv) injection speed, D; and
(v) dosing speed, E. These choices would usually be
available at the design stage. The bounds of the deci-
sion variables used are tabulated in Table I. Varia-
tion area of these objective functions must be
between 0 and 1; condition verified when parame-
ters fluctuate between �2 and þ2.
Figure 3 presents point’s sets corresponding to dif-

ferent typical solutions: they present different
arrangements between the limitation of foam density
and mass density. Pareto set is obtained with a pop-
ulation of 200 and 100 generations, parameters fixed
such as the achievement of a continued set. It can
easily be confirmed, because Pareto fronts, that as
the shock absorption coefficient increases (desirable),
the acoustic absorption coefficient decreases (unde-
sirable) and the foam density increases (undesirable)
and as the foam density increases (undesirable), the
mass density decreases (desirable) and the acoustic
absorption coefficient increases (desirable). To vali-
date these sets, one point has selecting from every
set and using process parameters corresponding to

TABLE III
Objective Functions

Objective function 1 Objective function 2

Minimize dm Minimize d
Minimize dm Maximize ashock
Minimize dm Maximize aacous (954 Hz)
Minimize dm Maximize aacous (1330 Hz)
Maximize ashock Maximize aacous (954 Hz)
Maximize ashock Maximize aacous (1330 Hz)

Figure 3 Pareto set for foam density and mass density.
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these points (Table IV), specimens were manufactur-
ing and foams characteristics were defining.

The table mentioned earlier presents also experi-
ments results of specimens manufacturing to vali-
date Pareto sets. It is clearly that theoretical
characteristics are belong to interval experimental
ones, these last are obtained using parameters pro-
cess corresponding to particular points chosen ran-
domly. For instance, Pareto curve (dm, d (Fig. 3) is
the points set of minimum foam density and shock
absorption coefficient. To obtain an injected foam
with a mass density equal to 0.2016 and a foam den-
sity equal to 0.1766, process parameters are follower:
an injection temperature equal to 250�C, a mold tem-
perature equal to 50�C, a back pressure equal to 30
bars, injection speed equal to 90 cm3/s, and a dosing
speed equal to 138 rd/min. Using these parameters,
measurement of mass and foam densities leads to an
interval of values that theoretical characteristics are
belong. In this case, experimental foam density fluc-
tuates between 0.1746 and 0.1788 and mass density
is between 0.1998 and 0.2024.

Dominant decision variable

The Pareto-optimal set aShock�aacous(1330 Hz)), prob-
lem no.1, is shown in Figure 4(a), while the five de-
cision variables, according to the shock absorption
coefficient, corresponding to the points on the Pareto
set are shown in Figure 4(b), respectively. It is found
that the optimal values of four of these five decision
variables are almost constant (Tinj, CP

2 (CP at their
upper bound for 0.706 � ashock � 00.722 and their
lower bound for 0.722 � ashock � 00.756), Vinj, and
Vdos at their upper bounds), and only Tm decreases
as the values of aShock increases and as the values of
aacous(1330 Hz) decreases.

In fact, in the latter case, Tm emerges as the single
dominant decision variable, varying along the Par-
eto-optimal points, while all the other four decision
variables take on constant values either at their
upper or lower bounds. A similar phenomenon of
dominating decision variables was observed in a
multiobjective optimization study of trains of

cyclone separators.26 This is a manifestation of the
sensitivity of the objective functions to the decision
variables.
To validate these results (that Tm is the single

dominant decision variable), multiobjective optimi-
zation is used to present Pareto-optimal set of aShock
� aacous(1330 Hz)), where Tinj ¼ Vinj ¼ Vdos ¼ 2 and
CP2 ¼ 4. Curves superposition proves that the two
Pareto sets, where the first with the five decision
variables and the other with a dominant decision
variable, are the same. Curves showing the shock
absorption coefficient and the five decision variables
according to the acoustic absorption coefficient give
the same conclusions. This procedure may be
applied to the other Pareto sets of our study case.

Figure 4 (a and b) Pareto set and values of the decision
variables corresponding to the points on the Pareto set.

TABLE IV
Optimal Pareto Sets Validation

Pareto set (f1, f2) f1theo f2theo

Process parameters

f1exp f2expTinj Tm CP Vinj Vdos

(dm, d) 0.1766 0.2016 þ2 þ2 þ2 �2 �0.0885 [0.1746–0.1788] [0.1998–0.2024]
(dm, aShock) 0.1948 0.7034 �0.7263 �2 þ2 �2 1.2868 [0.1946–0.2003] [0.7016–0.7085]
(dm, aacous (954 Hz)) 0.2127 0.4278 þ2 þ2 0.3935 þ2 þ2 [0.2106–0.2188] [0.4246–0.4288]
(dm, aacous (1330 Hz)) 0.2143 0.6741 þ2 þ2 0.8588 þ2 þ2 [0.2112–0.2168] [0.6736–0.6764]
aShock, aacous (954 Hz)) 0.7234 0.4054 þ2 0.61 þ2 þ2 þ2 [0.7214–0.7237] [0.4011–0.406]
aShock, aacous (1330 Hz)) 0.7059 0.6741 þ2 þ2 þ2 þ2 þ2 [0.6992–0.712] [0.6728–0.6758]
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Sensitivity of the pareto set to (constant)
values of Tinj, CP, Vinj, and Vdos

As discussed in the previous section, the mold tem-
perature, Tm, is the most important decision variable,
which controls the optimal solution. It is, therefore,
natural to use Tm as the sole decision variable, and
fix the others (Tm, CP2, Vinj, and Vdos) at constant
values. This would lead to less cumbersome design
procedures. This is precisely what has been done in
problem no. 2 (Table V), in which Tinj, CP

2, Vinj, and
Vdos have been kept constant. The Pareto set
obtained is almost identical to that for problem no. 1
[Fig. 4(a)], which is not surprising, because the con-
stant values of Tinj, CP

2, Vinj, and Vdos were taken to
be almost the same as those obtained in problem no.
1. Problem no. 2 is being called as the reference (ref)
case.

A sensitivity study is now carried out. The values
of Tinj, CP

2, Vinj, and Vdos are changed one at a time,
and optimal solutions (with Tm as the sole decision
variable) obtained. Table V shows details of the sev-
eral (problem nos. 3–10) studied, and Figures 5 and 6
show the results graphically. These diagrams are use-
ful to an engineer manufacturing injected LDPE
foams and will enable him, after targeting a particu-
lar foam characteristic, to select feasible (and opti-
mal) process parameters. These diagrams quantify
the trade-offs available. Figure 6 allows one to know
the kind of trade-offs that can be made between Tm

and one of the other four decision variables, Tinj, CP,
Vinj, and Vdos. This is useful for the case when an
engineer does not want to make more than two alter-
ations to an injection unit, as for example, if an engi-
neer must working with a higher mold temperature.

TABLE V
Description of Parameter Values Used to Study Problem Nos. 1–10

Problem no. 1 Problem no. 2

Problem no. Problem no. Problem no. Problem no.

3 4 5 6 7 8 9 10

Tinj �2..þ2 þ2 þ1 0 þ2 þ2 þ2 þ2 þ2 þ2
Tm �2..þ2 �2..þ2 �2..þ2 �2..þ2 �2..þ2 �2..þ2 �2..þ2 �2..þ2 �2..þ2 �2..þ2
CP2 0..þ4 þ4 þ4 þ4 2 0 þ4 þ4 þ4 þ4
Vinj �2..þ2 þ2 þ2 þ2 þ2 þ2 þ1 0 þ2 þ2
Vdos �2..þ2 þ2 þ2 þ2 þ2 þ2 þ2 þ2 þ1 0

Figure 5 Effect of (a) Tinj, (b) CP, (c) Vinj, and (d) Vdos on the Pareto sets. Tm is the only decision variables used.
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From the top chart of Figure 6, he would find out
that he has to decrease the injection temperature to
achieve the previous acoustic and shock absorption
coefficients, aShock and aacous(1330 Hz).

Pareto area

The aim of this part is to define the region where
values of two objective functions are possible. The
idea is based on applying the NSGA in different
cases possible of optimization: minimize f1 and f2,
maximize f1 and f2, minimize f1 and maximize f2,
and maximize f1 and minimize f2.

Optimal Pareto sets obtained are superposed to
form an area of objective functions values: Pareto

area. To validate this result, experimental data (used
in design of experiment stage) were confronted to
Pareto area. Figure 7 presents confrontation between
experimental data and Pareto area for (dm, aShock)
objective functions, it is clear that experimental
points have surrounded by Pareto sets. These curves
give an idea to the engineer about shock and acous-
tic performances of an injected LDPE foam with tak-
ing into account limit performances of injection
machine and material characteristics material used.
For example, with process parameters fluctuating
between �2 and þ2, an engineer cannot manufac-
ture an injected foam that has a mass density equal
to 0.2, a foam density equal to 0.16, a shock absorp-
tion coefficient equal to 0.5, and an acoustic absorp-
tion coefficients equal to 0.05 and 0.1 at 954 and
1330 Hz, respectively.

CONCLUSIONS

Robust models expressing some injected LDPE
foams characteristics according to some process pa-
rameters have been developed in this article, and the
use of experiment design theories proved to be a
good tool to found linear models fitting experimen-
tal data.
The input parameters considered are as follows:

injection temperature, mold temperature, injection
speed, plasticization back pressure, and screw rota-
tion speed during the plasticization phase. The main
outputs considered for the optimization are as fol-
lows: density, shock absorption, and acoustic
absorption. The choice of an appropriate model was
done by realizing confirmation tests on central val-
ues of inputs. In the last part of this article, models
are used to carry out multiobjective optimization of
injected foams characteristics in the presence of a
few constraints on decision variables. This optimiza-
tion is done using a very robust technique, NSGA.
Several two-objective functions involving sometimes
the maximization and other times minimization of

Figure 6 Effect of (a) Tinj, (b) Vinj, and (c) Vdos on the
optimal value of Tm corresponding to the Paretos.

Figure 7 Pareto area.
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foam characteristics have been studied to illustrate
the procedures and explain and interpret the results
obtained. One needs to solve several simpler optimi-
zation problems with just one or two decision varia-
bles (smaller amount of freedom), to gain insight
and to provide help in formulating the more general
multiobjective optimization problem.

The method used for investigation seems to be a
good one for the optimization of all plastics materi-
als injection process. Nevertheless, the model is
function of the material nature, specimen shape, and
the injection machine. Therefore, to make a correct
use of it and to correlate the presented results with
those of another injection product, it seems to be
necessary to perform comparative investigations.

NOMENCLATURE

X ¼ (X1, X2,. . ., Xk) System inputs
Y ¼ (Y1, Y2,. . ., Ym) System outputs
F Function input/output
e Prediction error
n Factors number
�a, �1, 0, þ1, and þa Factor levels a ¼ 2)
NF Factorial design test number
NA Central test number
N0 Star test number
P Force (Shock test)
l Displacement (Shock test)
E Energy (Shock test)
t time (Shock test)
e specimen thickness
H Impact altitude
m Impact mass
g Gravity
lmax Maximal displacement
Eel Elastic energy
Eimp impact energy
Eabs Absorbed energy
ashock Shock absorption coefficient
aacous(f) Acoustic absorption coefficient
f Frequency
d Mass density
dm Foam density
Tinj Injection temperature
Tm Mold temperature
CP Back pressure
Vinj Injection speed
Vdos Screw rotation speed
a0 Model constant

ai 1st order Input coefficient
cj 2nd order Input coefficient
bij Interactions coefficient
Ytheo Theoretical output value
Yexp Experimental output value
r Experimental standard

deviation
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